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Noise as a Public Health Problem On the application of two statistical approaches to establish noise exposure-response relationships from repeated binary observations Beat Schäffer1, Reto Pieren2, Franco Mendolia3, Mathias Basner4, Mark Brink5  1  Empa, Laboratory for Acoustics/Noise Control, Dübendorf, Switzerland (corresponding author) 2  Empa, Laboratory for Acoustics/Noise Control, Dübendorf, Switzerland 3  German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany 4  University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 5  Federal Office for the Environment, Noise and NIR Division, Berne, Switzerland   Corresponding author's e-mail address: beat.schaeffer@empa.ch  ABSTRACT Noise exposure-response relationships for binary variables such as high annoyance or sleep disturbance are used to estimate the effects of noise on individuals or a population. Such rela-tionships may be established from repeated binary observations with different statistical approaches. As the statistical approaches are inherently different and yield disparate results, it is crucial to decide which one to use. This aspect, however, was not always sufficiently consi-dered in the past in noise effect studies. This paper gives an overview on two existing statisti-cal approaches to establish noise exposure-response relationships from repeated binary ob-servations, namely, a subject-specific and a population-averaged logistic regression analysis. With an example of a recent noise effect study, the potential magnitude of differences in results between the two approaches is estimated, reasons for the differences are disclosed, and possible implications for future studies are discussed.  INTRODUCTION Noise exposure-response relationships are of importance to estimate the effects of noise on individuals or a population. In recent years, risk assessment of environmental noise, such as noise impacts on the population, became an important topic [1]. It is also required by the Environmental Noise Directive 2002/49/EC [2] to establish action plans. To that aim, approp-riate exposure-response relationships for binary data such as high annoyance (to be highly annoyed by noise or not) or awakening reactions (to awake from a noise event or not) are combined with spatial noise exposure and population data, and summed up to a single number for the considered noise effect(s). Besides risk assessment on the population level, the research focus may also be on responses of individuals to noise, for example in medical studies (e.g. [3]). 
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Exposure-response relationships for binary data may be derived from independent observa-tions (non-nested and non-hierarchical data: one observation per subject) or from repeated observations (repeated observations over different points in time of the same outcome in the same subject, in a sample of multiple subjects). Depending on the method by which the rela-tionships were established, their application in subsequent studies such as the estimation of noise effects on the population may be more or less straightforward and yield different results. While this critical point has been discussed in epidemiology, medicine or statistics (e.g. [4; 5; 6]), it was so far not sufficiently considered in noise effects research. This paper gives an overview on two existing statistical approaches to establish noise expo-sure-response relationships from repeated binary observations, namely, a subject-specific and a population-averaged approach. With an example of a recent laboratory study [7], the po-tential magnitude of differences in results between the two approaches is estimated, reasons for the differences are disclosed, and possible implications for future studies are discussed.  STATISTICAL MODELLING APPROACHES: OVERVIEW This section gives an overview of two common logistic regression modelling approaches for repeated binary observations to establish exposure-response relationships for the probability of a certain noise effect (e.g. awakening probability, probability of high annoyance) in environ-mental noise research. Repeated binary observations are obtained from repeated observa-tions of the same binary variable in subjects over different points in time, for example awaken-ings to noise events in the night (e.g. [3]), while independent observations are often obtained in field surveys, where each subject gives one single rating, for example on annoyance (e.g. [8]). As long as the binary observations are independent, a “standard” binary logistic regression analysis may be applied [9], which yields population-averaged exposure-response relation-ships [4] that are directly applicable in risk assessment on the population level. Such a model for the jth observation can be written as  ∑+=
k

jkkjkj XXYp ββ  = )|1(logit 0 , (1) where logit p = ln[p/(1–p)] is the logit link function [9] for the probability p of the response of the dependent binary variable Yj to adapt the value of 1 given the predictor variables, β0 is the intercept, and βk are the regression parameters quantifying the effects of the k predictor va-riables Xjk. Xjk can be a categorical variable with a certain number of levels (e.g. different sleep stages [3]), a continuous variable (e.g. sound pressure level), or interactions accounting for deviations from the additive model. Things are different for repeated binary observations. Here, one needs to account for the cor-relation of the data within subjects when establishing a statistical model. Among others, pos-sible approaches to do so are (i) a generalized estimating equations (GEE) model [6; 10] or (ii) a mixed-effects logistic regression model, also referred to as random-effects logistic regres-sion model [11; 12], which are “multi-level” or “hierarchical” models [13].  The GEE model for the jth observation of the ith subject can be written as  ∑+=
k

ijkkijkij XXYp PAPA = )|1(logit 0 ββ , (2) where βk are the regression parameters quantifying the effects of the k predictor variables Xijk on the dependent variable Yij, the index PA indicates that the parameters represent popula-tion-averaged effects, and the other variables have the same notation as in Equation 1. 
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to estimate the mean pHA in the population. The underlying data set was obtained from re-peated binary observations in a laboratory experiment with 60 subjects who were exposed to stimuli with an LAeq of 35–60 dB.  Statistical re-analysis of the data set To compare possible results of the PA and SS modelling approaches, the exposure-response relationships of both approaches were established based on the original data set of the above study [7]. For the analysis, the procedures GENLIN (for PA) and GENLINMIXED (for SS) of the software IBM SPSS Statistics Version 22 was used. (Note that other software packages such as SAS or R provide similar procedures as well.) For comparative purposes, the PA relationship was also estimated from the SS relationship using Equation 5. The PA relationship for pHA had already been established and was taken from Table II in [7]. The model considers the effects of Source, LAeq, AM, their interactions, and Sequence Num-ber as described above, and accounts for the repeated observations by an exchangeable wor-king correlation matrix. The SS relationship established in this study considers the same ex-planatory variables, but accounts for the repeated observations with a random intercept. In the following account, only the pHA relationship as a function of wind turbine noise is presented.  RESULTS Figure 2 shows the logistic regression models for pHA for wind turbine noise. For comparative purposes, also the mean observed relative frequencies of high annoyance are displayed. Note that these data do not allow to decide which relationship is “more appropriate” to represent the observations, because the appropriate model (SS or PA) is given by the research goal and not merely by the degree of agreement with observed data. Also, the regression curves adjust for all predictor variables (besides the LAeq) as well as for repeated observations, while the avera-ging does not. The latter aspect, however, is of minor importance here due to the full factorial design of [7]: Each dB class contains the same subjects, number of subjects, number of ob-servations and acoustic situations, and the model parameters were adjusted to their mean values. Only Sequence Number could not be exactly adjusted to the observed means, as these varied between dB classes (see [7]). The mean observations cover a wide range of relative frequencies with values from 0.08–0.82 (Figure 2). With the model parameters set to the mean of the predictor variables AM and Sequence Number during the experiments, the PA relationship closely represents the mean values of the observations. The SS relationship, in contrast, is substantially steeper than the PA relationship, which was expected (Figure 1). Also, the SS model represents the individual ratings more closely than the PA approach: The PA model has a rate of correct annoyance predictions of 82% (classification table), while the SS approach has rate of 91%. Further, the SS approach yields mostly larger absolute parameter estimates (βSS vs. βPA, not shown), as was expected according to theory. Both models, however, identify the same significant effects, namely, LAeq (p < 0.01), Sequence Number (p < 0.01), interaction Source × AM (p < 0.02) and in tendency also Source (p < 0.06). The SS and PA relationships intersect at a LAeq of 48 dB and corresponding pHA of ~0.47, which closely corresponds to the expected value of 0.5 (Figure 1). Below this level, the PA relationship predicts larger pHA values than the SS relationship and vice versa above. The PA model parameters established with the PA approach (Equation 2) may be reliably esti-mated by Equation 5 from the SS parameters (details not shown). Accordingly, the converted and directly modelled PA curves are almost identical (Figure 2). 
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The above results suggest that the SS and PA approaches may be expected to yield distinctly different curves if the observations cover a large range of relative frequencies and thus the SS model has a large random intercept variance, and vice versa. Thus, the underlying data used to establish an SS or PA model should cover a sufficiently large range of observed relative frequencies of the binary variable. The generalizability of these observations, however, still needs to be tested. In particular, re-analyses of additional data sets from other noise effect studies are desirable to estimate the nature and range of possible differences between the two modelling approaches. This is the focus of ongoing research by the authors. The insights of the present study have practical implications for future noise effect studies: • One needs to decide which approach, PA or SS, is more adequate for the aspired research question or application. Depending on the underlying data set, the choice may be crucial. • The design of noise effect studies, in particular the coverage of noise and possibly other indicators and thus the range of observed relative frequencies of the binary variable, strongly influences the established exposure-response relationships. • When applying existing exposure-response relationships to forecast either noise effects in the population or individuals’ responses, one should check if the relationships were derived from repeated binary data (as opposed to independent binary data) and if yes, which statistical model was used to do so. Analogous considerations apply to meta-analyses if exposure-response relationships from repeated binary observations are included. Regarding the last point, PA relationships, including those derived from independent observa-tions, may be directly used in risk assessment on the population level, while SS relationships are less straightforward to use for this purpose. Instead of using an SS relationship, one should preferably establish a PA relationship from the original data or, if the data are unavai-lable, consider converting the SS into a PA relationship using Equation 5 as shown above, particularly if the SS relationship was established from data covering a large range of observed relative frequencies. If neither is possible and the SS relationship is being used, this should be discussed as a limitation and source of uncertainty, or, alternatively, adequately interpreted, namely, that the effects on a mean subject are being estimated rather than the effects on the population. Similar care must be taken if existing PA relationships are to be used to estimate effects on individuals, where SS relationships are more appropriate to use. In the past, the above aspects were not always given sufficient consideration.  CONCLUSIONS In this paper, two statistical modelling approaches and their application to establish population-averaged or subject-specific noise exposure-response relationships from repeated binary observations were discussed. Re-analysis of an original data set from a recent noise effect study revealed that the choice of an appropriate modelling approach for the aspired research question may be crucial. It would be desirable to consider this aspect in future noise effect studies more thoroughly. The present paper is a contribution to this topic.  Acknowledgements This study was partly funded by the Swiss Federal Office for the Environment (Assignment No. 5211.00723.100.02).    
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